

### OCR (B) Physics GCSE Topic 3.4 - What determines the rate of energy transfer in a circuit?

#### Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0







# What factors affect the energy transferred when charge flows through a component?







What factors affect the energy transferred when charge flows through a component?

- Amount of charge.
- The potential difference across the component.







# What is the power rating of an appliance?







#### What is the power rating of an appliance?

# It shows the power the appliance uses, measured in Watts.







### Define power







#### Define power

# The rate of energy transfer, or the rate at which work is done.







# Give an equation linking power and potential difference, giving all SI units







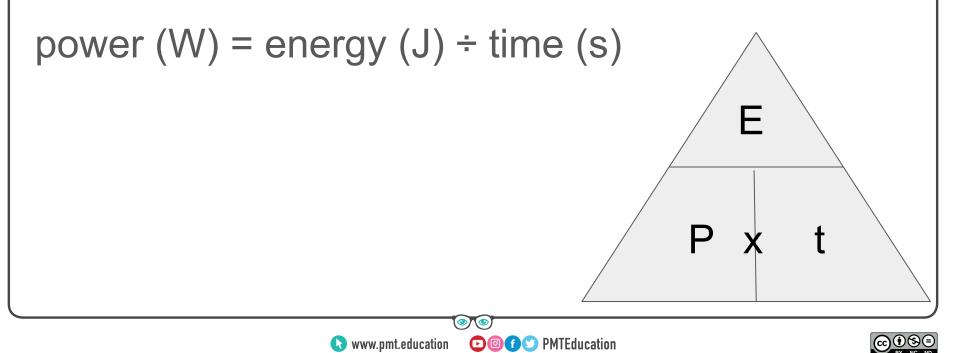
### Give an equation linking power and potential difference, giving all SI units










# Give an equation linking power and energy, giving all SI units







### Give an equation linking power and energy, giving all SI units





# Give an equation linking energy and potential difference, giving all SI units







### Give an equation linking energy and potential difference, giving all SI units

#### work done (J) = p.d. (V) x charge (C)





**\**//



# Give equations linking power with resistance, including all SI units







### Give equations linking power and resistance, including all SI units

power (W) = current<sup>2</sup> (A) x resistance (
$$\Omega$$
)  
P = I<sup>2</sup> x R  
power (W) = p.d.<sup>2</sup> (V) ÷ resistance ( $\Omega$ )  
P = V<sup>2</sup> ÷ R



◙∧⊚



### What is a step up transformer?







#### What is a step up transformer?

# A transformer which increases voltage (decreasing the current).







# Why does current decrease when voltage is increased?







Why does current decrease when voltage is increased?

Because of the principle of conservation of energy; the output power cannot be greater than the input power because the energy cannot be increased.







### Name the two coils in a transformer







#### Name the two coils in a transformer

### Primary coil and secondary coil.







### A step up transformer has more...







#### A step up transformer has more...

# ... turns on the secondary coil than on the primary coil.







### What is a step down transformer?







#### What is a step down transformer?

# A transformer which decreases the voltage (increasing the current).







### A step down transformer has more...







#### A step down transformer has more...

# ...turns on the primary coil than on the secondary coil.







### What is the transformer equation?







### What is the transformer equation? primary voltage x primary current = secondary voltage x secondary current

$$I_pV_p = I_sV_s$$
 so  $P_p = P_s$ 

This illustrates how power, and therefore energy, is conserved.







### Why is electricity transmitted through the national grid with a high voltage?







Why is electricity transmitted through the national grid with a high voltage?

This results in a low current, resulting in less power dissipation (so less energy is wasted in transport).







### When are step up transformers used?







#### When are step up transformers used?

# Increasing voltage for transport across the National Grid.







### When are step down transformers used?







#### When are step down transformers used?

# Decreasing voltage of the National Grid supply to 230V for domestic use.



